= L LanguageSystem Pro Q

Welcome

Welcome to LanguageSystem Pro
Documentation

LanguageSystem Pro is a powerful and versatile language management solution
designed to streamline multilingual support in your Unity projects. Whether you're
building games or interactive applications, LanguageSystem Pro enables you to easily
manage translations, switch languages dynamically, and integrate with external
language files using a variety of formats such as JSON, XML, and CSV.

This documentation will guide you through the features and functionality of
LanguageSystem Pro, providing detailed explanations and examples to help you get the
most out of this tool. From setup and integration to advanced customization, you'll find
everything you need to implement seamless language support in your project.

Key Features:

Multi-format Support: Handle language data in JSON, XML, or CSV formats.
Dynamic Language Switching: Effortlessly switch between languages at runtime.

Text and TextMeshPro Integration: Fully compatible with both Unity’s Ul system and
TextMeshPro.

External and Internal Language Files: Load languages from internal resources or
external files located in StreamingAssets.

Global Language Support: Manage global language files to maintain consistency
across different parts of your project.

= L LanguageSystem Pro Q

Quickstart

Getting Started: In the following sections, you'll learn how to set up
LanguageSystem Pro, integrate it into your project, and configure it to meet
the needs of your application.

Let's begin by exploring the installation process and basic configuration steps to get
your language system up and running!

LanguageSystem Pro: Step-by-Step Guide

Welcome to the complete guide for using LanguageSystem Pro in your Unity projects.
This document will walk you through each mode available in the system and how to
import, export, and manage language data efficiently.

LanguageSystem Pro supports multiple formats (JSON, XML, CSV) and offers both
internal and external language management options. Additionally, this guide will
introduce you to our free desktop tool, LanguageManagerEditor , which simplifies the
process of managing your language files.

+ Language Manager (Script)
Language Manager
Internal Database

en

Languages
guag

Languages
guag

en

Text Entries
Text Entries
greeting
N

tesi_Title

Import /| Export
Export JSON Import JSOM

Export CSV Import CSV

Export XhL Import XML

Export Base Model
Base Model JSOMN Base Model CSV Base Model XML

Add Component

Modes Overview

LanguageSystem Pro provides four modes to handle language data. Each mode serves
different project needs, whether you're working with internal resources, external files, or
global language data. Below is an explanation of each mode and how to use them

effectively:

1. Internal Database Mode

In Internal Database Mode , all translations are stored directly inside the Unity project,
which is ideal for smaller projects where you want to bundle language data within the
game files.

How to Use:

You can add translations by directly editing the TextEntries listin the
LanguageManager component. This mode does not require external files, making it

straightforward for smaller projects or when no external localization system is

needed.

Advantages:
Quick and easy for small projects.
No need to manage external files.
Disadvantages:
Not ideal for large projects with frequent updates to translations.

Any change to language data requires re-building the project.

2. External Files Mode

In External Files Mode , translations are stored as separate files in the
StreamingAssets folder. You can manage languages individually, using files named
after each language code (e.g., en.json, es.xml, pt-br.csv).

How to Use:

Place language files in the StreamingAssets/Languages/ folder. Each file should be
named according to its language code (en.json , pt-br.xml , etc.). These files can
be in JSON, XML, or CSV format, and the system will load them at runtime.

Advantages:
Easy to update translations without needing to re-build the project.

Developers can add or remove languages by simply modifying the
StreamingAssets folder.

Disadvantages:
Requires proper file management in the StreamingAssets folder.

Example Directory Structure:

StreamingAssets/
Languages/
en.json
es.json
pt-br.json

3. Global External Files Mode

This mode allows you to store all translations in a single global file. This is useful for
managing translations in one place, avoiding the need for multiple files.

How to Use:

Place a file named globallLanguages inthe StreamingAssets/Languages/ folder.
This file can also be in JSON, XML, or CSV format. The system will load all language
data from this global file.

Advantages:
Centralized management of translations.
Easy to maintain consistency across all languages.
Disadvantages:
For very large projects, a global file can become cumbersome to edit.

Example File:
A global file (globallLanguages.json , globallLanguages.xml , Or
globallanguages.csv) will contain all the translations for all languages in one place.

4. Component-Based Mode

In Component-Based Mode , individual Ul components can define their translations. This
mode allows you to directly attach translations to objects in the Unity Editor. This is
useful for highly customized localization setups.

How to use: Add the LocalizedText script to any Text or TextMeshProUGUI and set
your TextID and translations for each language. LanguageSystem Pro will dynamically
update the text based on the active language.

Advantages:
Fine-grained control over individual Ul elements.
Easily supports dynamic language switching.
Disadvantages:

Requires setting up each component manually.

= L LanguageSystem Pro Q

Importing and Exporting

Importing and Exporting Language Files

Importing Language Files

LanguageSystem Pro supports importing language data from StreamingAssets . When
using external files (either global or per-language files), ensure your files are properly
formatted and placed in the Languages folder.

Supported Formats:
JSON: Structured with TextID and corresponding TranslatedText .
XML: Using a serialized object structure.

CSV: CSV files should have the first row as the language IDs, and each following
row should map a TextID to its translations.

Automatic Detection:
The system will automatically detect whether a JSON, XML, or CSV file exists in the
StreamingAssets/Languages/ folder and load the appropriate one.

If you choose to use InternalDatabase mode, you can also import files with translations
already edited in an external application into Unity using the Import(JSON,XML,CSV)
buttons in the LanguageManager component.

Exporting Language Files

You can also export your current language data to the StreamingAssets folder in the
format of your choice (JSON, XML, or CSV). This can be done directly from the Unity
Editor using the Import(JSON,XML,CSV) button in the LanguageManager component.

How to export: Just click the Export(JSON,XML,CSV) button in the LanguageManager
component, specifying the path of the desired file. You can use this to backup your data
or prepare files with translations.

Import | Export

Export JSOM

Export XML

Export Base Model
Basze Model JSOMN

Next
InternalDatabase Mode

Base Model CSY

Import JSON
Import CSV
Import XL

Base Model XML

Previous
Quickstart

= L LanguageSystem Pro Q

InternalDatabase Mode

InternalDatabase Mode

When opting to use the InternalDatabase Mode, you can manually add languages to the
LanguageManager component, and below that, you can define a list of TextEntries by
adding the translations for each TextID along with the corresponding LanguageID .

You also have the flexibility to edit these files externally by exporting a base model in
your desired format. You can modify the file in external applications like Google Sheets
or Excel (in the case of CSV files).

We also offer a free editing tool specifically built for the LanguageSystem Pro format,
featuring a user-friendly layout that supports CSV, JSON, and XML formats. The tool
makes it easy to edit your language files, and you can export them as a global file for
use in InternalDatabase and GlobalExternal modes, or as separate files per language
for ExternalFiles mode. For more details, check the LanguageManagerEditor section.

Adding a Language:

Open the Languages listinthe LanguageManager component.
Click the Add button.

Define the LanguagelD (e.g., es, en, pt-br, pt-pt, etc.), the LanguageTitle, and
optionally set a Languagelcon.

Adding a Text Entry:

Open the TextEntries list and click Add to create a new text entry.
For each TextEntry , define a unique TextID to identify the text.

In the Translations list, add the LanguagelD and the corresponding translation for
each language.

Once you have configured the language and TextID , you can:

Add the WarpText componentto any Text or TextMeshProUGUI object.

Inthe TextID field of the wWarpText component, inputthe TextID that you want
the text to display.

When the game starts, the LanguageSystem Pro will automatically update the text in real
time based on the selected language.

+ Language Manager (Script)
Language Manager
Language Mode Internal Database

Current Language D £n

Languages

Languages
en
pit-br
pt-pt

Es

Text Entries
Text Entries
greeting
farewell
test_Title
Text D
Translations
en
Language ID &n

Welcome to the LanguagehManager tool showcase

Language ID pt=br

lranslated Text Bem vindos ao showcase da ferramenta Languageh

Language ID pt-pt

Translated Text Bem-vindos ao showcase da ferramenta Languagel

Language ID g5
Translated Text Bienvenido al escaparate de herramientas Languag
T =
test_Start
test_Error
error_hMessage

audio_Label

Import | Export
Export JSOMN Import JSON
Fxnort CSW Iminort S

O Inspector Asset Store Validator

« TitleWarp

ag Untagged * Layer Ul

Rect Transform

Anchors
hdin

Max

Canvas Renderer

Cull Transparent Mesh

« TextMeshPro - Text (Ul)
+ Warp Text (Script)

gqular SC

Shader TextMeshPro/Distance Field S5D

Add Component

Make sure to follow this process for all texts that you want to be translated within
your game.

Reminder: LanguageManagerEditor Tool

We offer a free LanguageManagerEditor tool, specifically designed for the
LanguageSystem Pro format. It has a friendly interface and supports easy import,
editing, and export of files in CSV, JSON, and XML formats. You can use this tool to
export global files for the InternalDatabase and GlobalExternal modes or individual
files per language for ExternalFiles mode.

For more details on using this editor, see the LanguageManagerEditor section.

= L LanguageSystem Pro Q

ExternalFiles Mode

ExternalFiles Mode

In ExternalFiles Mode, language files must be stored separately for each language in
the StreamingAssets/Languages folder. Each language should have its own file (e.g.,
en.json, pt-br.json , etc.), and the files should contain translations for that specific
language.

This mode allows you to easily manage translations externally, especially useful if your
project needs to scale with multiple languages. The system will automatically load the
appropriate file based on the selected language.

We also offer a free editing tool specifically built for the LanguageSystem Pro format,
featuring a user-friendly layout that supports CSV, JSON, and XML formats. The tool
makes it easy to edit your language files, and you can export them as a global file for
use in InternalDatabase and GlobalExternal modes, or as separate files per language
for ExternalFiles mode. For more details, check the LanguageManagerEditor section.

Preparing Language Files:

Inside the StreamingAssets/Languages folder, create separate files for each
language.

Each file must follow this format:

]
"Translations": [

]
"TextID": "greeting",
"TranslatedText": "Hello World"

5,

]
"TextID": "farewell",
"TranslatedText": "Goodbhye"

§

File Naming: The file should be named according to the language code, such as
en.json for English, pt-br.json for Brazilian Portuguese, and so on.

TextID: This is the unique identifier for the text entry that will be used in your game.

TranslatedText: This is the actual translation for the TextID in the selected
language.

Note: The system will automatically look for the file that matches the current
language, so make sure each language file contains the relevant translations.

Using WarpText with ExternalFiles Mode:

Once your language files are set up, you can use the WarpText component to display
translated text in the game.

Add the warpText componentto any Text or TextMeshProUGUI objectin your
scene.

Inthe TextID field of the WarpText component, enter the TextID that corresponds
to the translation in your language file.

When the game starts, the LanguageSystem Pro will automatically read the appropriate
file from StreamingAssets/Languages and update the text in real time based on the
selected language.

Switching Languages:

To switch between languages, the LanguageSystem Pro will dynamically load the file
corresponding to the selected language (e.g., en.json, es.json) from the
StreamingAssets/Languages folder. You can change languages using a dropdown or
any other input method, and the system will reload the text from the external files in real
time.

v Language Manager (Script)

Language Manager
External Files

Q

Import / Export

Export JSON Import JSON
Export CSW Import CSY
Export XML Import XML

Export Base Model
Base Model JSOM Base Model CSY Base Model XML

Add Component

Streamin s » Languages

pl-pt

O Inspector Asset Store Validator

« TitleWarp

ag Untagged * Layer Ul

Rect Transform

Anchors
hdin

Max

Canvas Renderer

Cull Transparent Mesh

« TextMeshPro - Text (Ul)
+ Warp Text (Script)

gqular SC

Shader TextMeshPro/Distance Field S5D

Add Component

Make sure to follow this process for all texts that you want to be translated within
your game.

Reminder: LanguageManagerEditor Tool

We offer a free LanguageManagerEditor tool, specifically designed for the
LanguageSystem Pro format. It has a friendly interface and supports easy import,
editing, and export of files in CSV, JSON, and XML formats. You can use this tool to
export global files for the InternalDatabase and GlobalExternal modes or individual
files per language for ExternalFiles mode.

For more details on using this editor, see the LanguageManagerEditor section.

= L LanguageSystem Pro Q

GlobalExternal Mode

GlobalExternal Mode

In GlobalExternal Mode, a single global language file is used to store translations for all
languages in one place. This file must be placed in the StreamingAssets/Languages
folder and should contain all translations for all supported languages. This is a good
option if you prefer to manage all translations in a single file rather than having separate

files for each language.

Preparing the Global Language File:

Inside the StreamingAssets/Languages folder, create a global language file (e.g.,
globallanguages.json, globallanguages.xml , or globallanguages.csv).

The global file should follow this format:

"TextEntries": [

)
"TextID": "greeting",
"Translations": [
%
"LanguageID": "en",
"TranslatedText": "Hello Woxrld"
§,
1
"LanguageID": "pt-br",
"TranslatedText": "0la Mundo"
§
]
o
)
"TextID": "farewell",
"Translations": [
1
"LanguageID": "en",
"TranslatedText": "Goodbye"
o
%
"LanguageID": "pt-br",
"TranslatedText": "Adeus"
§
]
§

* TextID: The unique identifier for each text entry.

* Translations: This list holds translations for each TextID , where each entry has a
LanguageID (e.g., en, pt-br) andthe corresponding TranslatedText .

Note: The system will load this file during game initialization and use it to switch

between languages.

Using WarpText with GlobalExternal Mode:

As with other modes, the WarpText component is used to display text in your game

based on the TextID.

1. Addthe warpText componenttoany Text or TextMeshProUGUI objectin your

scene.

Setthe TextID field in the wWarpText componentto match the ID from the global
language file (e.g., greeting , farewell).

When the game starts, the LanguageSystem Pro will load the global file from
StreamingAssets/Languages and automatically update the text in real time based on the
selected language.

File Formats Supported:
The global language file can be in any of the following formats:

JSON: globallanguages.json
XML: globallLanguages.xml
CSV: globallanguages.csv

You can choose whichever format suits your workflow. The system will automatically
detect and load the correct file during runtime.

Switching Languages:

To change the language in GlobalExternal Mode, the system will reload the
TranslatedText values from the global file based on the selected language. You can
implement a dropdown or a similar method to allow users to switch languages
dynamically.

+ Language Manager (Script)

Language Manager
Global External Files

Current Language D

Import / Export
Export JSOMN Impart JSON
Export CSY Import CSY
Export XML Import XL

Export Base Model
Base Model JSOMN Base Model CSY Base Model XML

Add Component

+ Language Manager (Script)

Language Manager
Language Mode Global External Files

Current Language D en

Q It's recommendead Lo export a backup before importing any of the fike types.

Import / Export
Export JSOM Import JSON
Export CSY Import CSY
Export XML Import XhiL

Export Base Model
Base Model JSOMN Base Model CSY Base Model XML

Add Component

B Inspector Asset Store Valid

ﬁﬂ « TitleWarp

Tag Untagged Laye

Rect Transform

ly"'m"iL: th

Anchors

hdir

M@
Pivot
Rotation
Scale
({G)] Canvas Renderer
Cull Transparent Mesh

«+ TextMeshPro - Text (Ul)

v Warp Text (Script)

Text ID test_Title

HedgeRegular SDF Material {Material)

Shader TextMeshPro/Distance Field S50

Add Component

Make sure to follow this process for all texts that you want to be translated within
your game.

Reminder: LanguageManagerEditor Tool

We offer a free LanguageManagerEditor tool, specifically designed for the
LanguageSystem Pro format. It has a friendly interface and supports easy import,
editing, and export of files in CSV, JSON, and XML formats. You can use this tool to
export global files for the InternalDatabase and GlobalExternal modes or individual
files per language for ExternalFiles mode.

For more details on using this editor, see the LanguageManagerEditor section.

Previous
ExternalFiles Mode

Next
ComponentBased Mode

Last updated 1 day ago

= L LanguageSystem Pro Q

ComponentBased Mode

ComponentBased Mode

In ComponentBased Mode, you do not need to manage external files or predefined lists
of translations. Instead, this mode allows you to handle translations directly through the

LocalizedText component on each text object. This provides a dynamic and flexible
solution for smaller projects or when you want to manage translations directly in the
Unity Editor.

Using the LocalizedText Component:

Add the LocalizedText componentto any Text or TextMeshProUGUI objectin your
scene.

Inthe LocalizedText component, you'll find a field for TextID where you can
define the unique identifier for each piece of text. This TextID will be used to refer
to this particular piece of text across all languages.

Below the TextID field, you will find fields for translations. For each language, you
can define the LanguagelD (e.g., en for English, pt-br for Brazilian Portuguese,
etc.) and provide the corresponding TranslatedText.

When the language is changed in your game, the LocalizedText component will

automatically update the displayed text based on the current language. There's no
need to manage external files, as all translations are stored within the component

itself.

Example of Adding a LocalizedText:

Add the Component: Select your Text or TextMeshProUGUI object and click Add
Component. Search for the LocalizedText component.

Define the TextID: Set a unique TextID for this text, for example, greeting .

Add Translations: For each supported language, add the LanguageID and the
corresponding translation:

For English (en): "Hello World"

For Brazilian Portuguese (pt-br): "Ola Mundo"

For Spanish (es): "Hola Mundo" . _
Automatic Update: When the language changes in your game, the text will

automatically update to the correct translation based on the TextID .

Benefits of ComponentBased Mode:

No need for external files: All translations are managed directly in Unity using the
LocalizedText component.

Dynamic updates: When the language is switched, each LocalizedText component
will update its displayed text without the need for reloading data from files.

Great for small-scale projects: This mode is ideal if you have a limited humber of
texts and want a quick, efficient way to localize them.

Switching Languages:

As with other modes, you can change the language in ComponentBased Mode
dynamically. Once the language is switched, all LocalizedText components in the
scene will automatically refresh to display the appropriate translations.

n + Language Manager (Script)

Language Manager
Component Based

Current Language D £

Q 'S recammentad 16 aport a backup bafors nparting any of the (i typss.

Import [Export
Export JSOM Import JSON
Export CSV Import CSY
Export XML Import XML
Export Base Model
Base Model JSON Base Model CSV Base Model XML

Add Component

i Layer

Anchors

hin

Canvas Renderer

Cull Transparent Mesh

+ TextMeshPro - Text (Ul)

+ Localized Text (Script)

Translations

Translated Te

25

Language IC

Make sure to follow this process for all texts that you want to be translated within
your game.

Reminder: LanguageManagerEditor Tool

We offer a free LanguageManagerEditor tool, specifically designed for the
LanguageSystem Pro format. It has a friendly interface and supports easy import,
editing, and export of files in CSV, JSON, and XML formats. You can use this tool to

export global files for the InternalDatabase and GlobalExternal modes or individual
files per language for ExternalFiles mode.

For more details on using this editor, see the LanguageManagerEditor section.

Previous
GlobalExternal Mode

Next
Importing Translated Text into Custom Script

Last updated 1 day ago

= L LanguageSystem Pro Q

Importing Translated
Text into Custom Script

Importing Translated Text into Custom Scripts

Overview

The LanguageManager system not only handles in-game text translations for Ul
elements, but it also allows you to fetch translated text directly into your custom scripts.
This can be useful when you need to handle translated content programmatically. In this
section, we'll show you how to integrate translated text into your custom scripts,

focusing on retrieving the translations using the LanguageManager's
GetTextEntryByID() method.

Example: Displaying Translated Error Messages

The following example demonstrates how to use the LanguageManager to retrieve a
translated error message based on the current language and display itina Text or
TextMeshProUGUI component in Unity. This is useful for displaying dynamic content like
error messages, notifications, or other in-game feedback that needs to adapt to the
player's selected language.

Here's how you can integrate text translations into a custom script:

Step-by-Step Breakdown

Assign Text Components: Start by adding a reference to a Text or
TextMeshProUGUI component in your script. These components will display the text
retrieved from the LanguageManager.

Get the Text ID: The LanguageManager stores each text entry using a unique
textID . In this example, we retrieve the translated text based on the textID
provided.

Retrieve the Translation: Use the LanguageManager method
GetTextEntryByID(textID) to fetch the translated text. This function returns the text
corresponding to the provided textID in the player's currently selected language.

Display the Translation: After fetching the translated text, assign it to your Ul
element (such as Text or TextMeshProUGUI), and it will update automatically based
on the current language.

Script Example

Here's a script that demonstrates how to import and use translated text in a custom
Unity script:

using System.Collections;
using UnityEngine;

using TMPzro;
using UnityEngine.UI;

namespace LanguageManager

1

/// <summary>

/// This script is used to display an error message from the LanguageManag
/// on a Text or TextMeshProUGUI component.

/// </summary>

public class ErrorMessageTest : MonoBehaviour

i

public TextMeshProUGUI textMeshProUGUI; // The TextMeshPro component 1
public UnityEngine.UI.Text text; // The Unity Text component to disple
public string textId; // The ID of the text in the LanguageManager

/// <summary>
/// Retrieves the error message from LanguageManager using the provide

/// and

displays it on the specified Text or TextMeshProUGUI componeni

/// </summary>
public void ShowErrorMessage()

// Get the error message from the LanguageManager using the te
string errorMessage = LanguageManager.Instance.GetTextEntryBy]

// Check if TextMeshProUGUI is assigned and set the error mess
if (textMeshProUGUI != null)
1
textMeshProUGUI.text = errorMessage;
textMeshProUGUI.color = Color.red; // Example: Set the te»
%
// If not, check if Unity Text is assigned and set the error n
else if (text != null)

1
text.text = errorMessage;
text.color = Color.red; // Example: Set the text color to
%
else
1
Debug.LogError("No Text or TextMeshProUGUI component is as
return;
%

catch (System.Exception ex)

%
try
%
5
%
§
5

Debug.lLogError("Failed to retrieve or display the error messag

Key Concepts

Using GetTextEntxyByID() : This is the core method for retrieving translations.
Simply pass the textID associated with the text you want, and LanguageManager
will return the correct translation for the current language.

string translatedText = LanguageManager.Instance.GetTextEntryByID(textId);

Displaying in Text or TextMeshProUGUI : You can directly assign the retrieved text to
either Text (Unity Ul) or TextMeshProUGUI components, depending on your project
setup. This allows you to use either Unity's built-in text system or TextMeshPro, both
of which are compatible with LanguageManager.

Usage Scenario

Imagine you are creating an in-game error popup or notification. Instead of hard-coding
the error message in a single language, you can use LanguageManager to ensure that
the message appears in the player's selected language, enhancing the user experience.

For example, if a player tries to perform an invalid action, you can fetch a translated
error message using GetTextEntryByID("error_invalid_action") and display it
dynamically on the UL.

Previous
ComponentBased Mode

Next
LanguageAudioManager

= L LanguageSystem Pro Q

LanguageAudioManager

LanguageAudioManager

Overview

The LanguageAudioManager is a singleton class in the LanguageSystem PRO that
manages language-specific audio clips. It allows you to easily manage and retrieve
audio files based on the current language setting in your game. You can use it to play
localized audio, such as voiceovers or sound effects, which change depending on the
selected language.

Key Features

Audio by Language: Automatically plays the correct audio file based on the game's
current language.

Audio Identification: Each audio clip is assigned an audioID for easy reference.

Language-Specific Audio Management: The system allows you to manage multiple
audio clips for each language and audiolD.

Audio Format Flexibility: Works with standard Unity AudioClip objects, meaning
you can use any supported audio format (e.g., MP3, WAV, etc.).

How It Works

The LanguageAudioManager stores audio clips using an audioID that maps to multiple
language-specific AudioClip objects. When the audio is requested, it automatically
selects the clip associated with the current language and returns or plays it.

Example Setup

Add the LanguageAudioManager component to a GameObject in your scene (e.qg.,
an empty GameObject or an audio manager GameObiject).

In the Inspector, configure the audioEntries listto include audioID s and
associated language-specific audio clips.

AudioEntry and LanguageAudio Structure

Each AudioEntry consists of:

audiolD: A string identifier for the audio (e.g., "greeting", "gameOver").

languageAudios: A list of LanguageAudio objects, where each entry links a
language ID (e.g., "en", "pt-BR") to its corresponding AudioClip .

API Reference
GetAudioByID(string audioID)

Returns the AudioClip for the given audioID in the current language.

AudioClip clip = LanguageAudioManager.Instance.GetAudioByID("greeting");

Parameters:
audioID : The ID of the audio file (e.g., "greeting").
Returns:

The AudioClip for the specified audiolD and the current language, or null if not
found.

AudioExists(stxing audioID)

Checks if a specific audio clip exists for the given audioID in the current language.

bool exists = LanguageAudioManager.Instance.AudioExists("greeting");

Parameters:
audioID : The ID of the audio to check.
Returns:

true if the audio exists, otherwise false .
PlayAudioByID(stxing audioID, AudioSource audioSource)

Plays the audio clip associated with the given audioID on the provided AudioSource .

LanguageAudioManager.Instance.PlayAudioByID("gameOver", audioSource);

Parameters:

audioID : The ID of the audio to play.

audioSource : The AudioSource where the audio will be played.
GetAvailableLanguagesForAudio(string audioID)

Returns a list of all available languages for the given audiolID .

List<string> languages = LanguageAudioManager.Instance.GetAvailablelLanguagesF«

Parameters:
audioID : The ID of the audio for which to retrieve available languages.
Returns:

A List<string> of language IDs that have associated audio clips.

Example: Play Localized Audio

Here's an example of how you can play localized audio using the
LanguageAudioManager.

public class PlaylLocalizedAudio : MonoBehaviour

i
public string audioID; // Unique audio ID for this sound
public AudioSource audioSource; // AudioSource component
private void Start()
%
LanguageAudioManager.Instance.PlayAudioByID(audioID, audioSouzrce);
§
§

Integrating with Custom Scripts

To integrate LanguageAudioManager into your custom scripts, use the audioID to
retrieve and play audio clips based on the current language, as shown in the example
above.

ﬂ Language Audio Manager (Script)

Audio Ent

Add Component

Previous
Importing Translated Text into Custom Script

Next
AudioWarper Component

= L LanguageSystem Pro Q

AudioWarper Component

AudioWarper

Overview

The AudioWarper component allows you to associate multiple audio clips with different
languages directly in the inspector. Unlike the LanguageAudioManager, this component
manages its own audio clips and swaps them automatically based on the selected
language, without depending on any external audio manager.

This is useful for situations where audio needs to be localized on a per-object basis, and
you want each object to handle its audio internally.

Key Features

Localized Audio: Each object can have its own localized audio clips based on
language.

Automatic Switching: The audio clips automatically change based on the currently
selected language.

Flexible Setup: Can be configured to play the audio either on an AudioSource
component or using PlayClipAtPoint for 3D sound positioning.

Easy Integration: Integrates seamlessly with the existing LanguageManager to track
language changes in real-time.

How It Works

The AudioWarper component stores a list of LocalizedAudioClip objects, each of
which contains a languageID and an associated AudioClip . When the language is
changed in the game, the component automatically updates the audio clip being used.

Setup Instructions

Add the Component: Add the AudioWarper component to any GameObject that
requires language-specific audio.

Configure Localized Audio Clips: In the Inspector, configure the audioClips listto
include the languageID (e.g., "en", "pt-BR") and the associated audio clip.

Optional - Auto Update AudioSource: If you want the component to automatically
update the AudioSource on the object, enable the
Change AudioSource Clip based on Language option and assign an AudioSource .

Play Audio: Use the PlaylocalizedAudio() method to play the audio in the correct
language.

AudioWarper Properties
audioClips

A list of localized audio clips. Each entry includes a languageID and an AudioClip .
changeAudioSourceClip

If enabled, the AudioSource on the GameObject will be automatically updated with
the correct audio clip based on the current language.

audioSource

The AudioSource component to update with the localized audio clip. If left empty,
the component will try to get the AudioSource automatically from the GameObject.

API Reference
UpdateAudioClip()

Updates the audio clip of the associated AudioSource based on the current language.

audioWarper.UpdateAudioClip();

PlayLocalizedAudio()

Plays the localized audio clip for the current language. If an AudioSource is assigned, it
plays through the AudioSource . Otherwise, it uses AudioSource.PlayClipAtPoint() to
play the audio at the GameObject's position.

audioWarper.PlaylLocalizedAudio();

GetAudioClipForLanguage (string languagelD)

Retrieves the AudioClip associated with a specific language ID.

AudioClip clip = audioWarper.GetAudioClipForLanguage("en");

StopAudio ()

Stops any currently playing audio on the assigned AudioSource .

audioWarper.StopAudio();

Example: Playing Localized Audio

Here's an example of how you can set up and use the AudioWarper component to play
localized audio.

Add the AudioWarper component to a GameObject.
Add different audio clips for each language to the audioClips list.
Ensure the AudioSource is assigned or use the default settings.

Call PlaylLocalizedAudio() when you want to play the audio in the correct language.

csharpCopiar céddigopublic class AudioPlayer : MonoBehaviour

1

public AudioWarper audioWarper;

private void Start()

1
audioWarper.PlaylLocalizedAudio();
§
$
Use Case

The AudioWarper component is ideal for use cases where you want to manage
localized audio clips directly on a GameObject without relying on a global audio
manager. It gives you more granular control over individual audio sources, allowing each
GameObject to manage its own language-specific audio assets.

v Audio Warper (Script)
Audio Clips

En
en

A EnglishTest

pi-br

A Portuguese-Text

panishTest

Change AudioSource Clip based on Language

Change Audio ! e Clip o

Previous
LanguageAudioManager

Next
Importing Audio into Custom Script

= L LanguageSystem Pro Q

Importing Audio into Custom Script

Importing Audio into Custom Script

Overview

The LanguageSystem PRO supports language-specific audio clips, allowing you to play
different audio files based on the current language setting. This system is managed by
the LanguageAudioManager, which uses audio IDs to retrieve the appropriate audio clip
for the selected language.

In this section, you will learn how to:

Retrieve and play an audio clip based on the selected language using its audio ID.

Implement the CustomAudiolmport component to integrate this feature into your
custom scripts.

Retrieving Language-Specific Audio Clips

To access an audio clip based on the current language, use the
LanguageAudioManager. It manages all audio clips by associating them with an
audioID and a list of language-specific AudioClip objects.

Example: How to Retrieve and Play an Audio Clip

Here is a basic example of how to retrieve and play an audio clip using the
LanguageAudioManager.

public class PlaylLocalizedAudio : MonoBehaviour

]
public string audioID; // Unique audio ID for this sound
public AudioSource audioSource; // The AudioSource that will play the aud:
private void Start()
%
// Get the audio clip based on the current language and audioID
AudioClip clip = LanguageAudioManager.Instance.GetAudioByID(audiolID);
// Check if the clip exists, then play it
if (clip !'= null)
%
audioSource.clip = clip;
audioSource.Play();
§
else
%
Debug.LogError($"Audio clip for '{faudioID}' not found.");
£
§
§

In this example:

The audioID is used to find the appropriate audio clip for the current language.

The audio is played via the provided AudioSource onthe GameObiject.

CustomAudiolmport Example

To make this process easier, you can use the CustomAudiolmport component, which
serves as a practical implementation of the LanguageAudioManager in a reusable
format. This component automatically retrieves and plays the correct audio clip for the
current language based on a given audiolID .

How to Use CustomAudiolmport
Follow these steps to integrate CustomAudiolmport:

Attach CustomAudiolmport: Add the CustomAudiolmport component to any
GameObject with an AudioSource component. If it doesn't have an AudioSource |,
you'll need to add one.

Set the Audio ID: In the CustomAudiolmport component, set the audioID field to
the desired audio ID (e.g., "greeting", "farewell").

. Automatic Playback: Once set up, CustomAudiolmport will automatically retrieve
the appropriate audio clip for the current language when the GameObject is
activated.

CustomAudiolmport Script Example

csharpCopiar codigousing UnityEngine;

public class CustomAudioImport : MonoBehaviour

%
public string audiolID; // The ID of the audio to play
private AudioSource audioSouzrce;
private void Awake ()
)
audioSource = GetComponent<AudioSource>();
// Automatically play the audio when the component starts
PlayAudioManually();
$
/// <summary>
/// Manually plays the audio associated with the current language and aud:
/// </summary>
public void PlayAudioManually()
%
if (audioSource == null)
)
Debug.LogError("No AudioSource found on this GameObject.");
return;
$
AudioClip clip = LanguageAudioManager.Instance.GetAudioByID(audioID);
if (clip !'= null)
%
audioSource.clip = clip;
audioSource.Play();
§
else
)
Debug.LogError($"Audio clip for '{faudioID}' not found.");
§
$
5

Customizing Audio for Each Language

Using CustomAudiolmport or manual scripting, you can customize audio playback for
each language. This flexibility allows for localized voiceovers, sound effects, or

notifications tailored to your audience's language preference.

Summary of Key Functions in LanguageAudioManager

GetAudioBylID(audiolD): Retrieves the AudioClip for the current language and the
given audioID .

PlayAudioByID(audiolD, AudioSource): Plays the audio clip for the audioID using
the provided AudioSource .

AudioExists(audiolD): Checks if an audio clip exists for the given audioID in the
current language.

Previous
AudioWarper Component

Next
Switching Languages

= L LanguageSystem Pro Q

Switching Languages

Switching Languages Using the LanguageButton and
LanguageDropdown Components

1. LanguageButton Component

The LanguageButton component is a simple, user-friendly solution for switching
languages when a button is clicked. Each button is tied to a specific language via the
languageID variable. When the button is clicked, the language is updated in the game.

How to Use the LanguageButton Component

Step 1: Add the LanguageButton component to a Unity Button in your scene.

Step 2: In the Inspector, you will see a field to input the languagelID . Enter the
language code (e.g., "en" , "pt-br" , "es") for the language that the button should
switch to.

Step 3: Now, when the button is clicked, the LanguageManager will switch the
language of the game to the corresponding languagelID .

Here's an example:

[RequireComponent (typeof (Button))]
public class LanguageButton : MonoBehaviour

%

public string languagelD;

private Button button;

private void Awake()

%
button = GetComponent<Button>();
button.onClick.AddListener(OnButtonClicked);

§

private void OnButtonClicked()

%
if (LanguageManager.Instance != null)
%

LanguageManager.Instance.SetlLanguage(languagelD);
§
else
%
Debug.lLogError("LanguageManager instance not found.");

5

§

§

Example Scenario

You could create multiple buttons, one for each language, and assign each a different
languagelID . Clicking the button will instantly change the game's language.

2. LanguageDropdown Component

The LanguageDropdown component allows players to select a language from a
dropdown list. It works with both Unity's built-in Dropdown and TextMeshPro
TMP_Dropdown. When a language is selected, the LanguageManager updates the
game's language accordingly.

How to Use the LanguageDropdown Component

Step 1: Add the LanguageDropdown component to a Unity Dropdown or
TextMeshPro TMP_Dropdown in your scene.

Step 2: The component automatically populates the dropdown with the languages
available in the LanguageManager.

Step 3: When the player selects a language from the dropdown, the language is
switched in the game.

Here's an example:

public class LanguageDropdown : MonoBehaviour
1

private Dropdown dropdown;

private TMP_Dropdown tmpDropdown;

private bool isTMPDropdown = false;

private void Awake()

%
dropdown = GetComponent<Dropdown>();
if (dropdown != null)
%
isTMPDropdown = false;
PopulateDropdown () ;
dropdown.onValueChanged.AddListener (OnDropdownValueChanged) ;
§
else
%
tmpDropdown = GetComponent<TMP_Dropdown>();
if (tmpDropdown != null)
1
isTMPDropdown = true;
PopulateDropdown () ;
tmpDropdown.onValueChanged.AddListener (OnTMPDropdownValueChang
§
else
%
Debug.LogError("No Dropdown or TMP_Dropdown component found or
§
§
£
private void PopulateDropdown()
%
if (LanguageManager.Instance != null)
%

List<string> options = new List<string>();
foreach (Language language in LanguageManager.Instance.lLanguages)

t
options.Add(language.lLanguageTitle);

if (isTMPDropdown && tmpDropdown != null)
]
tmpDropdown.ClearOptions();
tmpDropdown.AddOptions(options);

int currentIndex = LanguageManager.Instance.lLanguages.FindInde
if (currentIndex >= 0)
]

tmpDropdown.value = currentIndex;

