Unity IPC Custom Animation Curves - MocapOnline

Some of our Animation Packs now have In-Place Custom(IPC) curves. They can be ignored, and will not affect
any animation programming you normally do and are accustomed to working with.

HOWEVER, combined with the “Reference Root” motion we offer(please see our other docs about Root
motion) they are a potentially powerful and useful tool.

WHAT ARE IPC CURVES?
W - - : - -ﬁ%ﬁ

Preview | @ | Md | M | » | M | DM | @4 | 0:00 0:10 20 (L0 1:10 120
MOB1_Stand_Relaxed To_Walk_R13 ¢| Samples (30 |
L= MotusMan_v5S | Animater.Right Hand Thum Y.=5275 &
b 0% MotusMan_w55 : Animator.Right Hand Q @
b 2% MotusMan_v55 ; Animator.Right Hand T &
b 1% MotusMan_w55 : Animator.Root Q &
b 0% MotusMan_vw55 : Animator.Root T @

M

12 MotusMan_w55 ¢ Animator.Spine Front-Back -0.140%
12 MotusMan_v55 @ Animator.Spine Left-Right 007915
1% MotusMan_w55 ¢ Animator.Spine Twist Left-F -0.009%
12 MotusMan_v55 : Animator.Upper Chest Fron 21220
12 MotusMan_v55 @ Animator.Upper Chest Left- -0.083%
12 MotusMan_v55 @ Animator.Upper Chest Twis ~2.0707

Lo S

Add Property |

| Dopesheet | Curves | 4

Fig. 1

IPC curves are derived and calculated from the original “Root” animation as two values:
e “Speed” - The character’'s cm/sec(centimeters per second) speed, frame by frame.
e “Rot(yaw)” - The character’s rotational heading(facing direction) in degrees, frame by frame.
An animation always starts at zero degrees.

A simple example: “Walk_Forward_Loop_IPC” would have a constant Speed of 128.194 cm/sec, and a
constant Rot(yaw) of zero degrees moving in a straight line.

A more complex example, however:
Using (Fig. 1) above “Stand_Relaxed_To_Walk_R135_Fwd_IPC” as an example, the action result would be:
e The “Root” moves in a straight diagonal line Right/Back(at -135 deg) using the red curve values frame
by frame for speed.
The “Root” rotates to the right using the green curve values frame by frame for the number of degrees.
The animation ends at frame 52, with the Speed at 126.388 cm/sec, and the Rot(yaw) heading at -135
degrees.
e This transition animation ends with the character walking in a straight line facing 135 degrees to the right,
and would blend into “Walk_Forward_Loop_IPC” with a reset Rot(yaw) value of zero degrees, and a
constant Speed value of 128.194 cm/sec.

By using these “IPC” curve values with “Root” motion, an in-place motion can be moved and accurately
replicate the original variable root motion of the character. Instead of assigning static, linear or arbitrary values to
the speed and/or heading as guesswork and creating foot sliding errors and other poor looking behavior.

IPC GETTING STARTED - Basic Settings

Make sure “Animated Custom Properties” is checked in the Animation Import Settings for all animations.
(See Fig. 2)

€ Inspector | B
'_ MOBR1_Stand Relaxed Idle_vw2 IPC Import Settings @ .

| Open |
mm INallpEiet Materials

Import Animation [+

Bake Animations

Anim. Compression | off &}

Animated Custom Properties [« -‘—
Fig. 2

Since the IPC curves are based on the reference “Root” animation, in order to work correctly you have to
set the character’s root motion node to "Root".
You will find this setting right at the bottom of the Animation Import Settings. (See Fig. 3)

B Curves

¥ Events

b Mask

¥ Mation

Root Motion Node | Raat _ &

b Import Messages ' e |
<Root Transform> Apply
Motushan_vi5

MOB1_Walk_F _Loop_II /| Root .

I‘ Root

Fig. 3

To make them appear in the “Animation” Window, you have to add the respective parameters as floats to the
Animator component. (See Fig. 4).

2 Animator
Layers | Parameters - Base Laye
Speed [0.0 Float
— Rot(yaw) oo Int
- : Bool
Trigger
|

Fig. 4

The naming has to exactly match the curve names, otherwise, it won‘t work. If you mistyped the parameter
names or forgot to add them at all, they will appear to be “Missing!” in the “Animation” window (See Fig. 5).
Make sure you added the parameters and their names match exactly.

NOTE: If Unity still shows “Missing!” in the animation window, you need to update the window by dragging the
time slider on the right just a few frames. The “Missing!” notify should be gone now.

(D Animation - -

Praview | P I.I I I. » . w1 I. .
MDE.I_Etand_R!Iax!d_Tn_hlalk_F_Il¢| Samples R

%% MotusMan_w55 @ Animator.Right Hand.Little . Spread ~0.2654
%% MotusMan_v55 : Animator.Right Hand Middle.1 St O 40926
%% MotusMan_w55 : Animator.Right Hand Middle,2 Strg 045540
%% MotusMan_vw55 : Animator.Right Hand .Middle.3 Strg 054534
%% MotusMan_vw55 : Animator.Right Hand Middle Spree 05918
%% MotusMan_vw55 : Animator.Right Hand.Ring.1 Strete ©.27563
L% MotusMan_v55 : Animator.Right Hand.Ring.2 Stret 055021
%% MotusMan_v55 @ Animator.Right Hand.Ring.3 Stret; 0.9450%
%% MotusMan_v55 ; Animator.Right Hand.Ring.Spread -9.2140
12 MotusMan_v55 @ Animator.Right Hand. Thumb .1 Str -1.5593
%% MotusMan_v55 ; Animator.Right Hand. Thumb .2 Str 042282
%% MotusMan_v55 : Animator.Right Hand . Thumb .3 Str 082063
%% MotusMan_vw55 : Animator.Right Hand . Thumb Spre 9.28372

I 15 MotusMan_w55 : Animator.Right Hand Q

P 55 MotusMan_ w55 ; Animator.Right Hand T

P 2% MotusMan_w55 : Animator.Root Q

P 5% MotusMan_w55 ; Animator.Root T
=~ MotusMan_vw55 @ Animator.Rot(yaw) (Miss
=~ MotusMan_v55 : Animator.Speed (Missing!)
%2 MotusMan_w55 : Animator.Spine Front-Back -0.0944
%% MotusMan_w55 : Animator.Spine Left-Right : D.0D382
%% MotusMan_v55 @ Animator.Spine Twist Left-Right 0.02008

00000080

%2 MotusMan_w55 :
%% MotusMan_w55 :
1% MotusMan_w55 @

Animator.Upper Chest Front-Back -0.0282
Animator.Upper Chest Left-Right 000241
Animator.Upper Chest Twist Left-f 007772

Add Property |

Dopesheet | Curves

Fig. 5

To read the parameters using C# Script, just use GetFloat(“Speed”) as mentioned in the Unity docs:
https://docs.unity3d.com/ScriptReference/Animator.GetFloat.html

It is recommended to use 1/100 of the speed, as IPC curves are in centimeters per second, and Unity uses
meters per second by default. You would need to use your own values, depending on your project settings.

voidStart()
{

anim=gameObject.GetComponent<Animator>();

}

voidUpdate()

{
Debug.Log(anim.GetFloat("Speed")/100);

https://docs.unity3d.com/ScriptReference/Animator.GetFloat.html

***NOTE: This is not meant to be a full programming tutorial for using IPC curves!

It is just some basics on how to access and initially approach using IPC, thanks to our clever friend Zyblade on
the official Unity Community Forum!

Zyblade saw the IPC curves we include in UE4 and asked us to offer them in Unity as well. He has done some
very cool things with them!

Please direct any detailed programming conversation to the Unity Community Forum.

Zyblade and MocapOnline will be there as well to discuss the usage of IPC curves.

www.MocapOnline.com
https://assetstore.unity.com/publishers/4746
Unity Community Forum
Unity@MotusDigital.com

https://forum.unity.com/
http://www.mocaponline.com/
https://assetstore.unity.com/publishers/4746
https://forum.unity.com/
mailto:Unity@MotusDigital.com

